1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
| int size();
boolean isEmpty();
boolean contains(Object o);
Iterator<E> iterator();
Object[] toArray();
<T> T[] toArray(T[] a);
boolean add(E e);
boolean remove(Object o);
boolean containsAll(Collection<?> c);
boolean addAll(Collection<? extends E> c);
boolean addAll(int index, Collection<? extends E> c);
boolean removeAll(Collection<?> c);
boolean retainAll(Collection<?> c);
default void replaceAll(UnaryOperator<E> operator) { Objects.requireNonNull(operator); final ListIterator<E> li = this.listIterator(); while (li.hasNext()) { li.set(operator.apply(li.next())); } }
@SuppressWarnings({"unchecked", "rawtypes"}) default void sort(Comparator<? super E> c) { Object[] a = this.toArray(); Arrays.sort(a, (Comparator) c); ListIterator<E> i = this.listIterator(); for (Object e : a) { i.next(); i.set((E) e); } }
void clear(); boolean equals(Object o);
int hashCode();
E get(int index);
E set(int index, E element);
void add(int index, E element);
E remove(int index);
int indexOf(Object o);
int lastIndexOf(Object o);
ListIterator<E> listIterator();
ListIterator<E> listIterator(int index);
List<E> subList(int fromIndex, int toIndex);
@Override default Spliterator<E> spliterator() { if (this instanceof RandomAccess) { return new AbstractList.RandomAccessSpliterator<>(this); } else { return Spliterators.spliterator(this, Spliterator.ORDERED); } }
static <E> List<E> of() { return ImmutableCollections.emptyList(); }
static <E> List<E> of(E e1) { return new ImmutableCollections.List12<>(e1); }
static <E> List<E> of(E e1, E e2) { return new ImmutableCollections.List12<>(e1, e2); }
static <E> List<E> of(E e1, E e2, E e3) { return new ImmutableCollections.ListN<>(e1, e2, e3); }
static <E> List<E> of(E e1, E e2, E e3, E e4) { return new ImmutableCollections.ListN<>(e1, e2, e3, e4); }
static <E> List<E> of(E e1, E e2, E e3, E e4, E e5) { return new ImmutableCollections.ListN<>(e1, e2, e3, e4, e5); }
static <E> List<E> of(E e1, E e2, E e3, E e4, E e5, E e6) { return new ImmutableCollections.ListN<>(e1, e2, e3, e4, e5, e6); }
static <E> List<E> of(E e1, E e2, E e3, E e4, E e5, E e6, E e7) { return new ImmutableCollections.ListN<>(e1, e2, e3, e4, e5, e6, e7); }
static <E> List<E> of(E e1, E e2, E e3, E e4, E e5, E e6, E e7, E e8) { return new ImmutableCollections.ListN<>(e1, e2, e3, e4, e5, e6, e7, e8); }
static <E> List<E> of(E e1, E e2, E e3, E e4, E e5, E e6, E e7, E e8, E e9) { return new ImmutableCollections.ListN<>(e1, e2, e3, e4, e5, e6, e7, e8, e9); }
static <E> List<E> of(E e1, E e2, E e3, E e4, E e5, E e6, E e7, E e8, E e9, E e10) { return new ImmutableCollections.ListN<>(e1, e2, e3, e4, e5, e6, e7, e8, e9, e10); }
@SafeVarargs @SuppressWarnings("varargs") static <E> List<E> of(E... elements) { switch (elements.length) { case 0: return ImmutableCollections.emptyList(); case 1: return new ImmutableCollections.List12<>(elements[0]); case 2: return new ImmutableCollections.List12<>(elements[0], elements[1]); default: return new ImmutableCollections.ListN<>(elements); } }
static <E> List<E> copyOf(Collection<? extends E> coll) { return ImmutableCollections.listCopy(coll); }
|